2018-cont

Measurability of the epidemic reproduction number in data-driven contact networks

Quan-Hui Liu, Marco Ajelli, Alberto Aleta, Stefano Merler, Yamir Moreno, Alessandro Vespignani

Proceedings of the National Academy of Sciences

November 21, 2018

ABSTRACT

The basic reproduction number is one of the conceptual cornerstones of mathematical epidemiology. Its classical definition as the number of secondary cases generated by a typical infected individual in a fully susceptible population finds a clear analytical expression in homogeneous and stratified mixing models. Along with the generation time (the interval between primary and secondary cases), the reproduction number allows for the characterization of the dynamics of an epidemic. A clear-cut theoretical picture, however, is hardly found in real data. Here, we infer from highly detailed sociodemographic data two multiplex contact networks representative of a subset of the Italian and Dutch populations. We then simulate an infection transmission process on these networks accounting for the natural history of influenza and calibrated on empirical epidemiological data. We explicitly measure the reproduction number and generation time, recording all individual-level transmission events. We find that the classical concept of the basic reproduction number is untenable in realistic populations, and it does not provide any conceptual understanding of the epidemic evolution. This departure from the classical theoretical picture is not due to behavioral changes and other exogenous epidemiological determinants. Rather, it can be simply explained by the (clustered) contact structure of the population. Finally, we provide evidence that methodologies aimed at estimating the instantaneous reproduction number can operationally be used to characterize the correct epidemic dynamics from incidence data.

Dengue seroprevalence in a cohort of schoolchildren and their siblings in Yucatan, Mexico (2015-2016)

Norma Pavía-Ruz, Gloria Abigail Barrera-Fuentes, Salha Villanueva-Jorge, Azael Che-Mendoza, Julio César Campuzano-Rincón, Pablo Manrique-Saide, Diana Patricia Rojas, Gonzalo M. Vazquez-Prokopec, M. Elizabeth Halloran, Ira M. Longini, Héctor Gómez-Dantés

PLoS Neglected Tropical Diseases

November 21, 2018

ABSTRACT

Dengue is a major public health problem in Latin America. Its transmission is highly heterogeneous, and its burden varies by geographic region, age group affected, serotype and other factors. While surveillance of dengue in the region has improved, several limitations remain, including under detection, misdiagnosis and the complexity of controlling a vector that has adapted to human dwellings in tropical and subtropical urban contexts. Prospective studies have become crucial to understand the transmission of dengue in urban environments and assess the impact of control strategies, such as the introduction of a dengue vaccine or additional vector control interventions. Our findings provide epidemiological data regarding the serological profile and risk factors for dengue infections in a cohort of children 0 to 15 years old in an endemic state in Mexico and confirmed the high exposure in these age groups. Likewise, enhanced and passive surveillance of cases gave us the opportunity to measure the behavior of dengue activity during chikungunya and Zika viruses’ arrival, which we believe will contribute to improve the design of surveillance and control strategies.

Epidemiology of dengue and other arboviruses in a cohort of school children and their families in Yucatan, Mexico: Baseline and first year follow-up

Diana Patricia Rojas, Gloria Abigail Barrera-Fuentes, Norma Pavia-Ruz, Mariel Salgado-Rodriguez, Azael Che-Mendoza, Pablo Manrique-Saide, Gonzalo M. Vazquez-Prokopec, M. Elizabeth Halloran, Ira M. Longini, Hector Gomez-Dantes

PLoS Neglected Tropical Diseases

November 21, 2018

ABSTRACT

Dengue is the most prevalent mosquito-borne viral disease of humans and is caused by the four serotypes of dengue virus. To estimate the incidence of dengue and other arboviruses, we analyzed the baseline and first year follow-up of a prospective school-based cohort study and their families in three cities in the state of Yucatan, Mexico. Through enhanced surveillance activities, acute febrile illnesses in the participants were detected and yearly blood samples were collected to evaluate dengue infection incidence. A Cox model was fitted to identify hazard ratios of arboviral infections in the first year of follow-up of the cohort. The incidence of dengue symptomatic infections observed during the first year of follow-up (2015–2016) was 3.5 cases per 1,000 person-years (95% CI: 1.9, 5.9). The incidence of dengue infections was 33.9 infections per 1,000 person-years (95% CI: 31.7, 48.0). The majority of dengue infections and seroconversions were observed in the younger age groups (≤ 14 years old). Other arboviruses were circulating in the state of Yucatan during the study period. The incidence of symptomatic chikungunya infections was 8.6 per 1,000 person-years (95% CI: 5.8, 12.3) and the incidence of symptomatic Zika infections was 2.3 per 1,000 person-years (95% CI: 0.9, 4.5). Our model shows that having a dengue infection during the first year of follow-up was significantly associated with being female, living in Ticul or Progreso, and being dengue naïve at baseline. Age was not significantly associated with the outcome, it was confounded by prior immunity to dengue that increases with age. This is the first report of a cohort in Latin America that provides incidence estimates of the three arboviruses co-circulating in all age groups. This study provides important information for understanding the epidemiology of dengue and other arboviruses and better informing public health policies.

Causes and consequences of spatial within-host viral spread

Molly E. Gallagher , Christopher B. Brooke , Ruian Ke , Katia Koelle

Viruses

November 13, 2018

ABSTRACT

The spread of viral pathogens both between and within hosts is inherently a spatial process. While the spatial aspects of viral spread at the epidemiological level have been increasingly well characterized, the spatial aspects of viral spread within infected hosts are still understudied. Recent experimental studies, however, have started to shed more light on the mechanisms and spatial dynamics of viral spread within hosts. Here, we review these experimental studies as well as the limited number of computational modeling efforts that have begun to integrate spatial considerations for understanding within-host viral spread. We limit our review to influenza virus to highlight key mechanisms affecting spatial aspects of viral spread for pathogens of the respiratory tract. There is considerable empirical evidence for highly spatial within-host spread of influenza virus, yet few computational modeling studies that shed light on possible factors that structure the dynamics of this spatial spread. In existing modeling studies, there is also a striking absence of theoretical expectations of how spatial dynamics may impact the dynamics of viral populations. To mitigate this, we turn to the extensive ecological and evolutionary literature to provide informed theoretical expectations for what viral and host factors may impact the spatial patterns of within-host viral dynamics and for how spatial spread will affect the genetic composition of within-host viral populations. We end by discussing current knowledge gaps related to the spatial component of within-host influenza virus spread and the potential for within-host spatial considerations to inform the development of disease control strategies.

Seroprevalence and Symptomatic Attack Rate of Chikungunya Virus Infection, United States Virgin Islands, 2014–2015

Morgan J. Hennessey, Esther M. Ellis, Mark J. Delorey, Amanda J. Panella, Olga I. Kosoy, Hannah L. Kirking, Grace D. Appiah, Jin Qin, Alison J. Basile, Leora R. Feldstein, Brad J. Biggerstaff, Robert S. Lanciotti, Marc Fischer, J. Erin Staples

American Journal of Tropical Medicine and Hygiene

November 5, 2018

ABSTRACT

When introduced into a naïve population, chikungunya virus generally spreads rapidly, causing large outbreaks of fever and severe polyarthralgia. We randomly selected households in the U.S. Virgin Islands (USVI) to estimate seroprevalence and symptomatic attack rate for chikungunya virus infection at approximately 1 year following the introduction of the virus. Eligible household members were administered a questionnaire and tested for chikungunya virus antibodies. Estimated proportions were calibrated to age and gender of the population. We enrolled 509 participants. The weighted infection rate was 31% (95% confidence interval [CI]: 26–36%). Among those with evidence of chikungunya virus infection, 72% (95% CI: 65–80%) reported symptomatic illness and 31% (95% CI: 23–38%) reported joint pain at least once per week approximately 1 year following the introduction of the virus to USVI. Comparing rates from infected and noninfected study participants, 70% (95% CI: 62–79%) of fever and polyarthralgia and 23% (95% CI: 9–37%) of continuing joint pain in patients infected with chikungunya virus were due to their infection. Overall, an estimated 43% (95% CI: 33–52%) of the febrile illness and polyarthralgia in the USVI population during the outbreak was attributable to chikungunya virus and only 12% (95% CI: 7–17%) of longer term joint pains were attributed to chikungunya virus. Although the rates of infection, symptomatic disease, and longer term joint symptoms identified in USVI are similar to other outbreaks of the disease, a lower proportion of acute fever and joint pain was found to be attributable to chikungunya virus.

Genomic epidemiology supports multiple introductions and cryptic transmission of Zika virus in Colombia

Allison Black, Louise H Moncla, Katherine Laiton-Donato, Lissethe Pardo, Angelica Rico, Catalina Tovar, Diana P Rojas, Ira M Longini, M Elizabeth Halloran, Dioselina Peláez-Carvajal, Juan D Ramírez, Marcela Mercado-Reyes, Trevor Bedford

bioRxiv

October 29, 2018

ABSTRACT

Colombia was the second most affected country during the American Zika virus (ZIKV) epidemic, with over 109,000 reported cases. Despite the scale of the outbreak, limited genomic sequence data were available from Colombia. We sequenced ZIKV genomes from Colombian clinical diagnostic samples and infected Aedes aegypti samples across the temporal and geographic breadth of the epidemic. Phylogeographic analysis of these genomes, along with other publicly-available ZIKV genomes from the Americas, indicates at least two separate introductions of ZIKV to Colombia, one of which was previously unrecognized. We estimate the timing of each introduction to Colombia, finding that ZIKV was introduced and circulated cryptically for 5 to 7 months prior to ZIKV confirmation in September 2015. These findings underscore the utility of genomic epidemiological studies for understanding epidemiologic dynamics, especially when many infections are asymptomatic

Quantifying the risk of local Zika virus transmission in the continental US during the 2015-2016 ZIKV epidemic

Kaiyuan Sun, Qian Zhang, Ana Pastore y Piontti, Matteo Chinazzi, Dina Mistry, Natalie E. Dean, Diana P. Rojas, Stefano Merler, Piero Poletti, Luca Rossi, M. Elizabeth Halloran, Ira M. Longini Jr., Alessandro Vespignani

BMC Medicine

October 18, 2018

ABSTRACT

Background: Local mosquito-borne Zika virus (ZIKV) transmission has been reported in two counties of the continental United State (US), prompting the issuance of travel, prevention, and testing guidance across the continental US. Large uncertainty, however, surrounds the quantification of the actual risk of ZIKV introduction and autochthonous transmission across different areas of the US. Method: We present a framework for the projection of ZIKV autochthonous transmission in the continental US during the 2015-2016 epidemic, using a data-driven stochastic and spatial epidemic model accounting for seasonal, environmental and detailed population data. The model generates an ensemble of travel-related case counts and simulate their potential to trigger local transmission at individual level. Results: We estimate the risk of ZIKV introduction and local transmission at the county level and at the 0.025 degree by 0.025 degree cell level across the continental US. We provide a risk measure based on the probability of observing local transmission in a specific location during a ZIKV epidemic modeled after the one observed during the years 2015-2016. The high spatial and temporal resolutions of the model allow us to generate statistical estimates of the number of ZIKV introductions leading to local transmission in each location. We find that the risk is spatially heterogeneously distributed and concentrated in a few specific areas that account for less than 1% of the continental US population. Locations in Texas and Florida that have actually experienced local ZIKV transmission are among the places at highest risk according to our results. We also provide an analysis of the key determinants for local transmission, and identify the key introduction routes and their contributions to ZIKV spread in the continental US. Conclusions: This framework provides quantitative risk estimates, fully captures the stochasticity of ZIKV introduction events, and is not biased by the under-ascertainment of cases due to asymptomatic infections. It provides general information on key risk determinants and data with potential uses in defining public health recommendations and guidance about ZIKV risk in the US.

Epidemiology of the silent polio outbreak in Rahat, Israel, based on modeling of environmental surveillance data

Andrew F. Brouwer, Joseph N. S. Eisenberg, Connor D. Pomeroy, Lester M. Shulman, Musa Hindiyeh, Yossi Manor, Itamar Grotto, James S. Koopman, Marisa C. Eisenberg

PNAS

October 18, 2018

ABSTRACT

Israel experienced an outbreak of wild poliovirus type 1 (WPV1) in 2013–2014, detected through environmental surveillance of the sewage system. No cases of acute flaccid paralysis were reported, and the epidemic subsided after a bivalent oral polio vaccination (bOPV) campaign. As we approach global eradication, polio will increasingly be detected only through environmental surveillance. We developed a framework to convert quantitative polymerase chain reaction (qPCR) cycle threshold data into scaled WPV1 and OPV1 concentrations for inference within a deterministic, compartmental infectious disease transmission model. We used this approach to estimate the epidemic curve and transmission dynamics, as well as assess alternate vaccination scenarios. Our analysis estimates the outbreak peaked in late June, much earlier than previous estimates derived from analysis of stool samples, although the exact epidemic trajectory remains uncertain. We estimate the basic reproduction number was 1.62 (95% CI 1.04–2.02). Model estimates indicate that 59% (95% CI 9–77%) of susceptible individuals (primarily children under 10 years old) were infected with WPV1 over a little more than six months, mostly before the vaccination campaign onset, and that the vaccination campaign averted 10% (95% CI 1–24%) of WPV1 infections. As we approach global polio eradication, environmental monitoring with qPCR can be used as a highly sensitive method to enhance disease surveillance. Our analytic approach brings public health relevance to environmental data that, if systematically collected, can guide eradication efforts.